234k views
2 votes
What is the sum of the first 11 terms of the geometric sequence: -4, 12, -36, 108,...

1 Answer

4 votes


a_1=-4,\ a_2=12,\ a_3=-36,\ a_4=108,\ ...\\\\a_2:a_1=12:(-4)=-3\\a_3:a_2=-36:12=-3\\a_4:a_3=108:(-36)=-3\\a_(n+1):a_n=-3=const.\\\\\text{It's a geometric sequence}\\\\a_n=a_1r^(n-1)\to a_n=-4\cdot(-3)^(n-1)=-4\cdot(-3)^(-1)\cdot(-3)^n\\\\=-4\cdot\left(-(1)/(3)\right)\cdot(-3)^n=(4)/(3)(-3)^n\\\\\text{The formula of a Sum of the First n Terms of a Geometric Sequence:}


S_n=(a_1(1-r^n))/(1-r)\\\\\text{We have:}\\a_1=-4,\ r=-3,\ n=11\\\\\text{Substitute:}\\\\S_(11)=(-4[1-(-3)^(11)])/(1-(-3))=(-4(1+177147))/(4)=-177148\\\\Answer:\ -177,148

User FalloutBoy
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories