The object will hit the ground in 4.3 s.
The formula used for the object thrown by Chay is:
![h(t)=-16t^(2)+v_(0)t+h_(0)](https://img.qammunity.org/2019/formulas/mathematics/high-school/enukjz21xr8g3wxhrwg9slrf1r92yp9pmw.png)
According to the problem,
Initial velocity
![v_(0)=60ft/s](https://img.qammunity.org/2019/formulas/mathematics/high-school/t2po96mcze7m59fc8dc0fnixfjfzt6ftuz.png)
Initial height
![h_(0)=40ft](https://img.qammunity.org/2019/formulas/mathematics/high-school/hte1873jmmfaulqcu830d1dz7mrr1qd94h.png)
Therefore,
![h(t)=-16t^(2)+60t+40](https://img.qammunity.org/2019/formulas/mathematics/high-school/qvvioc7cxclscy831axtrghe2vsz11lg96.png)
When the object hits the ground h(t) becomes 0.
Thus,
![0=-16t^(2)+60t+40](https://img.qammunity.org/2019/formulas/mathematics/high-school/g5l14h1rfzcc9cfz5lxx5f1fbxey1dqdkb.png)
Dividing both sides by 4 we get;
![4t^(2)-15t-10=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/5r61em0b86p9bom8s902azexa4ckw9hxcm.png)
Solving by applying quadratic formula;
![x=\frac{-b+/-\sqrt{b^(2-4ac) } }{2a}](https://img.qammunity.org/2019/formulas/mathematics/high-school/g77iawgabrixvwt7kwtt3egvj68j99mkog.png)
![t=\frac{15+/-\sqrt{15^(2)+160 } }{8}](https://img.qammunity.org/2019/formulas/mathematics/high-school/qrtvo6roobxk3d5uyriqs2j1z0g55gvnra.png)
t=4.3s