We have to solve the system of equations by Cramer's rule.
The coefficient matrix is given by
![D=\begin{bmatrix}3&4\\8 &-2\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/high-school/wdqdmqdmekyp55coakxxvkxrpxev0p58pv.png)
Let us find the determinant of coefficient matrix.
![|D|= -6-32=-38](https://img.qammunity.org/2019/formulas/mathematics/high-school/93hsjjvjt6ih1c025mlq7bycdoj79s02cs.png)
For X-matrix
![D_x=\begin{bmatrix}15&4\\40 & -2\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/high-school/4kicep36kuh1qd7t60lhnkuqo13xv99mcx.png)
Now, we find its determinant
![|D_x|=-30-160=-190](https://img.qammunity.org/2019/formulas/mathematics/high-school/2vgkgmawljdlcnizujeedsll4ozjnau099.png)
For Y-matrix
![D_x=\begin{bmatrix}15&3\\ 40&8\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/high-school/8ttk10vmwbdtk0u2fxkklbiu7pvy7bezjb.png)
Now, we find its determinant
![|D_y|=120-120=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/13hkoq8zjl4ttvmc2ych9660phvb4ws8w9.png)
Therefore, the value for x is given by
![x=(D_x)/(D)\\\\x=(-190)/(-38)\\\\x=5](https://img.qammunity.org/2019/formulas/mathematics/high-school/tc39dnnvsv9ah6cvyd12tdh091754qccl3.png)
The value for x is 5.