Answer:
![p_(N_2)^(eq)=p_(O_2)^(eq)}=18.27atm](https://img.qammunity.org/2019/formulas/chemistry/college/s8l1t8rcq9gkw4xe82ut9lk9hsgvwujctd.png)
Step-by-step explanation:
Hello,
In this case, for the given chemical reaction, the law of mass action turns out:
![Kp=(p_(N_2)^(eq)p_(O_2)^(eq))/((p_(NO)^(eq))^2)](https://img.qammunity.org/2019/formulas/chemistry/college/oapq80rpe5o09exjvfpl2heenuy4kyk1mm.png)
Whereas the equilibrium pressures, based on the stoichiometry and the change
, changes to:
![Kp=((x)(x))/((37.30-2x)^2)=2400](https://img.qammunity.org/2019/formulas/chemistry/college/get11xlks6inzzqafzsvrajf3egx3yb86z.png)
Solving for
via quadratic equation, one obtains:
![x_1=18.27atm\\x_2=18.84atm](https://img.qammunity.org/2019/formulas/chemistry/college/lu93qbu3lykaa1pefb332gq5l0wtj126fc.png)
In such a way, the feasible solution is 18.27 atm since the other pressure lead to a negative pressure of NO at the equilibrium, therefore, the equilibrium pressures of nitrogen and oxygen that are equal, result in:
![p_(N_2)^(eq)=p_(O_2)^(eq)}=x_1=18.27atm](https://img.qammunity.org/2019/formulas/chemistry/college/o5hste93m1l8zvfm63lraju03k006t1sgb.png)
Best regards.