204k views
0 votes
Write the expression as a complex number in standard form- -2i(1+i)(2+3i)

User Mrbrich
by
7.4k points

1 Answer

0 votes


\text{Standard form:}\ a+bi,\ a,b\in\mathbb{R}\\\\-2i(1+i)(2+3i)\qquad\text{use distributive property}\\\\=[(-2i)(1)+(-2i)(i)](2+3i)\\\\=(-2i-2i^2)(2+3i)\qquad i=√(-1)\to i^2=-1\\\\=(-2i+2)(2+3i)\qquad\text{use distributive property}\\\\=(-2i)(2)+(-2i)(3i)+(2)(2)+(2)(3i)\\\\=-4i-6i^2+4+6i\qquad i=√(-1)\to i^2=-1\\\\=-4i+6+4+6i\qquad\text{use commutative and associative property}\\\\=(6+4)+(-4i+6i)\\\\=\boxed{10+2i}

User Michael Ceber
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories