Create line segment BM so that it is perpendicular to AC (creating a 90° angle). Now you have created ΔAMB which is a 30°-60°-90° triangle and ΔCMB which is a 45°-45°-90° triangle.
ΔAMB
hypotenuse: AB = 12 (given) = 2x ⇒ x = 6
60°: BM = x√3 ⇒ BM = 6√3
30°: AM = x ⇒ AM = 6
ΔCMB
45°: BM = 6√3 (solved from ΔAMB) = x
45°: MC = x ⇒ MC = 6√3
hypotenuse: BC = x√2 ⇒ BC = 6√6
Perimeter (P)
P = AB + BC + AC (AC = AM + MC per segment addition postulate)
P = 12 + 6√6 + 6 + 6√3
P = 18 + 6√6 + 6√3