168k views
0 votes
Given: △FKL, FK=a, m∠F=45°, m∠L=30° Find: FL

User Ssbsts
by
5.4k points

2 Answers

2 votes

The best way to do this is to draw a picture of ΔFKL and include line segment KM that is perpendicular to FL. This creates ΔFKM which is a 45°-45°-90° triangle and ΔLKM which is a 30°-60°-90° triangle.

Find the lengths of FM and ML. Then, FM + ML = FL

FM

ΔFKM (45°-45°-90°): FK is the hypotenuse so FM =
(a)/(√(2)) = (a√(2) )/(2)

ML

ΔLKM (30°-60°-90°): from ΔFKM, we know that KM =
(a√(2) )/(2) , so KL =
(a)/(√(6)) = (a√(6) )/(6)

FM + ML = FL


((3)/(3))(a√(2)  )/(2) + (a√(6)  )/(6)

=
(3a√(2) + a√(6) )/(6)

User Mohamed NAOUALI
by
5.0k points
6 votes

Answer:


√(2)(a(√(3)+2))/((√(3)+1))

Explanation:

Given: △FKL, FK=a, m∠F=45°, m∠L=30°

To Find:

Solution: Consider the file attached.

a perpendicular is drawn to Line FK from L, LP

in Δ
\text{FLP},


\text{KP}=\text{x}


\text{FP}=\text{a}+\text{x}

as
\text{m}\angle \text{PFL}=45^(\circ)=\text{m}\angle\text{FLP}


\text{FP}=\text{a}+\text{x}=\text{LP}

now, in Δ
\text{KLP},


\text{m}\angle\text{PKL}=75^(\circ)


\text{tan}75=\frac{\text{LP}}{\text{PK}}


\text{KP}=\text{x}


\text{LP}=\text{x}+\text{a}


2+√(3)=\frac{\text{a}+\text{x}}{\text{x}}


2\text{x}+\text{x}√(3)=\text{a}+\text{x}


\text{x}=\frac{\text{a}}{(√(3)+1)}


\text{LP}=\frac{\text{a}}{(√(3)+1)}+\text{a}


\text{LP}=\frac{\text{a}(√(3)+2)}{(√(3)+1)}

now, in Δ
\text{FLP}


\text{LP}=\text{FP}

using pythagoras theorem


\text{LP}^2+\text{FP}^2=\text{FL}^2


2\text{LP}^2=\text{FL}^2


\text{FL}^2=2(a^2(√(3)+2)^2)/((√(3)+1)^2)


\text{FL}=√(2)(a(√(3)+2))/((√(3)+1))

So, length of
\text{FL} is
√(2)(a(√(3)+2))/((√(3)+1))

Given: △FKL, FK=a, m∠F=45°, m∠L=30° Find: FL-example-1
User Rrreee
by
5.4k points