18.2k views
2 votes
Simply the expression in the simplest form​

Simply the expression in the simplest form​-example-1

1 Answer

11 votes

Answer:


\frac{\sqrt[3]{20}}{5}

Explanation:

Let
x = \sqrt[3]{(4)/(25)}, we proceed to show the procedure to determine the simplest form of this number:

1)
\sqrt[3]{(4)/(25) } Given.

2)
\left((4)/(25)\right)^(1/3) Definition of cubic root.

3)
[4\cdot (25)^(-1)]^(1/3) Definition of division.

4)
(4)^(1/3)\cdot [(25)^(-1)]^(1/3)
a^(c)\cdot b^(c) = (a\cdot b)^(c)

5)
\{(4)^(1/3)\cdot [(25)^(-1)]^(1/3)\} \cdot \{[(25)^(-1)]^(2/3)\cdot [(25)^(-1)]^(-2/3)\} Modulative and associative properties/Existence of multiplicative inverse/
a^(b)\cdot a^(c) = a^(b+c)

6)
\{(4)^(1/3)\cdot [(25)^(-1)]^(-2/3)\}\cdot \{[(25)^(-1)]^(1/3)\cdot [(25)^(-1)]^(2/3)\} Commutative and associative properties

7)
\{(4)^(1/3)\cdot [(25)^(-1)]^(-2/3)\}\cdot (25)^(-1)
a^(b)\cdot a^(c) = a^(b+c)

8)
[(4)^(1/3)\cdot (25)^(2/3)]\cdot (25)^(-1)
(a^(b))^(c) = a^(b\cdot c)

9)
[4\cdot (25)^(2)]^(1/3)\cdot (25)^(-1)
(a^(b))^(c) = a^(b\cdot c)/
a^(c)\cdot b^(c) = (a\cdot b)^(c)

10)
(2500)^(1/3)\cdot (25)^(-1) Definition of power and multiplication.

11)
[(125)\cdot (20)]^(1/3)\cdot (25)^(-1) Definition of multiplication.

12)
(125)^(1/3)\cdot [(20)^(1/3)\cdot (25)^(-1)]
a^(c)\cdot b^(c) = (a\cdot b)^(c)/Associative property.

13)
5\cdot [(20)^(1/3)\cdot (25)^(-1)] Definition of cubic root.

14)
5\cdot [(20)^(1/3)\cdot (5)^(-1)\cdot (5)^(-1)] Definition of multiplication/
a^(c)\cdot b^(c) = (a\cdot b)^(c)

15)
[(20)^(1/3)\cdot (5)^(-1)][5\cdot (5)^(-1)] Commutative and associative properties.

16)
(20)^(1/3)\cdot (5)^(-1) Existence of multiplicative inverse/Modulative property

17)
\frac{\sqrt[3]{20}}{5} Definitions of cubic root and division/Result

User Wisty
by
4.1k points