18.2k views
2 votes
Simply the expression in the simplest form​

Simply the expression in the simplest form​-example-1

1 Answer

11 votes

Answer:


\frac{\sqrt[3]{20}}{5}

Explanation:

Let
x = \sqrt[3]{(4)/(25)}, we proceed to show the procedure to determine the simplest form of this number:

1)
\sqrt[3]{(4)/(25) } Given.

2)
\left((4)/(25)\right)^(1/3) Definition of cubic root.

3)
[4\cdot (25)^(-1)]^(1/3) Definition of division.

4)
(4)^(1/3)\cdot [(25)^(-1)]^(1/3)
a^(c)\cdot b^(c) = (a\cdot b)^(c)

5)
\{(4)^(1/3)\cdot [(25)^(-1)]^(1/3)\} \cdot \{[(25)^(-1)]^(2/3)\cdot [(25)^(-1)]^(-2/3)\} Modulative and associative properties/Existence of multiplicative inverse/
a^(b)\cdot a^(c) = a^(b+c)

6)
\{(4)^(1/3)\cdot [(25)^(-1)]^(-2/3)\}\cdot \{[(25)^(-1)]^(1/3)\cdot [(25)^(-1)]^(2/3)\} Commutative and associative properties

7)
\{(4)^(1/3)\cdot [(25)^(-1)]^(-2/3)\}\cdot (25)^(-1)
a^(b)\cdot a^(c) = a^(b+c)

8)
[(4)^(1/3)\cdot (25)^(2/3)]\cdot (25)^(-1)
(a^(b))^(c) = a^(b\cdot c)

9)
[4\cdot (25)^(2)]^(1/3)\cdot (25)^(-1)
(a^(b))^(c) = a^(b\cdot c)/
a^(c)\cdot b^(c) = (a\cdot b)^(c)

10)
(2500)^(1/3)\cdot (25)^(-1) Definition of power and multiplication.

11)
[(125)\cdot (20)]^(1/3)\cdot (25)^(-1) Definition of multiplication.

12)
(125)^(1/3)\cdot [(20)^(1/3)\cdot (25)^(-1)]
a^(c)\cdot b^(c) = (a\cdot b)^(c)/Associative property.

13)
5\cdot [(20)^(1/3)\cdot (25)^(-1)] Definition of cubic root.

14)
5\cdot [(20)^(1/3)\cdot (5)^(-1)\cdot (5)^(-1)] Definition of multiplication/
a^(c)\cdot b^(c) = (a\cdot b)^(c)

15)
[(20)^(1/3)\cdot (5)^(-1)][5\cdot (5)^(-1)] Commutative and associative properties.

16)
(20)^(1/3)\cdot (5)^(-1) Existence of multiplicative inverse/Modulative property

17)
\frac{\sqrt[3]{20}}{5} Definitions of cubic root and division/Result

User Wisty
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories