28.1k views
0 votes
Find (f*g)(x) when f(x)=x^2-7x+12 and g(x)=3/x^2-16

1 Answer

4 votes

The answer is:
(f*g)(x)= (3x-9)/(x+4)

Step-by-step explanation

Given functions are.......


f(x)=x^2-7x+12


g(x)= (3)/(x^2-16)

For finding
(f*g)(x) , we just need to multiply the two functions
f(x) and
g(x). So......


(f*g)(x)= f(x)*g(x)\\ \\ (f*g)(x)= (x^2-7x+12)((3)/(x^2-16))\\ \\ (f*g)(x)= [(x-3)(x-4)][(3)/((x+4)(x-4))]\\ \\ (f*g)(x)= (3(x-3))/(x+4) = (3x-9)/(x+4)


User Imthath
by
5.9k points