18.7k views
2 votes
Given matrices A, B, and C below, perform the indicated operations if possible. If the operation is not possible, explain

Given matrices A, B, and C below, perform the indicated operations if possible. If-example-1

2 Answers

4 votes

a)


3\left[\begin{array}{ccc}2&amp;-1&amp;0\\0&amp;5&amp;0.3\\1&amp;4&amp;10\end{array}\right][tex] + [tex]\left[\begin{array}{ccc}5&amp;0&amp;2\\1&amp;-3&amp;9\\2&amp;0&amp;4\end{array}\right][tex]</p><p>= [tex]\left[\begin{array}{ccc}6&amp;-3&amp;0\\0&amp;15&amp;0.9\\3&amp;12&amp;30\end{array}\right] [tex]+ [tex]\left[\begin{array}{ccc}5&amp;0&amp;2\\1&amp;-3&amp;9\\2&amp;0&amp;4\end{array}\right][tex]</p><p>= [tex]\left[\begin{array}{ccc}11&amp;-3&amp;2\\1&amp;12&amp;9.9\\5&amp;12&amp;34\end{array}\right][tex]</p><p>b)</p><p>not possible because matrices B and C do not have the same dimensions</p><p>c)</p><p>[tex][1 &nbsp;3 &nbsp;5] x \left[\begin{array}{ccc}2&amp;-1&amp;0\\0&amp;5&amp;0.3\\1&amp;4&amp;10\end{array}\right][tex]</p><p>= [tex]\left[\begin{array}{ccc}1(2) + 3(0) + 5(1)\\1(-1) + 3(5) + 5(4)\\1(0) + 3(0.3) + 5(10)\end{array}\right]

=
\left[\begin{array}{ccc}7\\34\\50.9\end{array}\right]

User WestDiscGolf
by
8.8k points
5 votes

Answer:

Explanation:

(a) We first compute 3A and then 3A+B. To compute 3A, we multiply each entry of A by 3


3A=\left[\begin{array}{ccc}3 \cdot 2&amp; 3\cdot -1&amp;3\cdot 0\\3 \cdot 0&amp;3 \cdot 5&amp; 3 \cdot 0.3\\3 \cdot 1 &amp;3 \cdot 4 &amp;3 \cdot 10\end{array}\right] =\left[\begin{array}{ccc}6&amp;-3&amp;0\\0&amp;15&amp;0.9\\3&amp;12&amp;30\end{array}\right]

the we sum the entries of 3A and B that are in the same position


3A+B=\left[\begin{array}{ccc}6&amp;-3&amp;0\\0&amp;15&amp;0.9\\3&amp;12&amp;30\end{array}\right] +\left[\begin{array}{ccc}5&amp;0&amp;2\\1&amp;-3&amp;9\\2&amp;0&amp;4\end{array}\right]=\left[\begin{array}{ccc}6+5&amp;0-3&amp;0+2\\0+1&amp;15-3&amp;0.9+9\\3+2&amp;12+0&amp;30+4\end{array}\right]=\left[\begin{array}{ccc}11&amp;-3&amp;2\\1&amp;12&amp;9.9\\5&amp;12&amp;34\end{array}\right]

(b) Although it's possible to compute 3A, it's not possible to compute 2B+C. We can only sum matrices of the same size, 2B is a 3x3 matrix. However, C is a 1x3 matrix.

(c) C is a 1x3 matrix and A is a 3x3 matrix, hence CA is a 1x3 matrix. To compute CA, we multiply by left the culumns of A with the row of the matrix C.


CA=\left[\begin{array}{ccc}1&amp;3&amp;5\end{array}\right]\left[\begin{array}{ccc}2&amp;-1&amp;0\\0&amp;5&amp;0.3\\1&amp;4&amp;10\end{array}\right]\\= \left[\begin{array}{ccc}2 \cdot 1 + 3 \cdot 0 + 5 \cdot 1&amp; -1\cdot1+3 \cdot 5 + 5 \cdot 4 &amp; 0 \cdot1 + 3 \cdot 0.3 +5 \cdot 10 \end{array}\right]\\=\left[\begin{array}{ccc}2+5 &amp;-1+15+20 &amp; 0.9 +50\end{array}\right]=\left[\begin{array}{ccc}7&amp;34&amp;50.9\end{array}\right]

User Chris Horner
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories