Answer:
21.4
Explanation:
Given: The coordinates of the vertices of △ABC are A(−2,2), B(5,−3), and C(−4,−1).
To find: Identify the perimeter of △ABC. Round each side length to the nearest tenth.
Solution: To find the perimeter of △ABC, we first need to find the length AB, BC and AC.
We know the distance formula between the coordinates
is
![\sqrt{(x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2)}](https://img.qammunity.org/2019/formulas/mathematics/high-school/dur8lq99kfs448dfwdgwn2ch2pwg94wt9t.png)
![AB=\sqrt{(5+2)^(2) +(-3-2)^(2) } =√(49+25)=√(74)=8.60](https://img.qammunity.org/2019/formulas/mathematics/high-school/3o2f9ebff115l946jjmab8lgchg78kwntf.png)
![BC=\sqrt{(-4-5)^(2) +(-1+3)^(2) } =√(81+4)=√(85)=9.21](https://img.qammunity.org/2019/formulas/mathematics/high-school/xp5zu2222fqc43xvz2o1aoo4nb2vqiclyx.png)
![AC=\sqrt{(-4+2)^(2) +(-1-2)^(2) } =√(4+9)=√(13)=3.60](https://img.qammunity.org/2019/formulas/mathematics/high-school/9hcgwqscydww9k4qqbie3qabhrl7jt7zr8.png)
Now, rounding each side to the nearest tenth we have,
![AB=8.6](https://img.qammunity.org/2019/formulas/mathematics/high-school/xvjevzwqb18hcqwi64qozf4iq3fqr5t6nj.png)
![BC=9.2](https://img.qammunity.org/2019/formulas/mathematics/high-school/bwefl2hgql9pipscjuxywno9a1yzg50v8l.png)
![AC=3.6](https://img.qammunity.org/2019/formulas/mathematics/high-school/3kk8ttxs0rvuxx3kuyfyaeke5mrnffwc80.png)
Now, perimeter of △ABC
![=AB+BC+AC](https://img.qammunity.org/2019/formulas/mathematics/high-school/qg5f523c0mvpoq2ijjqyyjnep4lytln7l8.png)
![=8.6+9.2+3.6](https://img.qammunity.org/2019/formulas/mathematics/high-school/j7uaccvhrpcsghpolva8288h3a38twx8go.png)
![=21.4](https://img.qammunity.org/2019/formulas/mathematics/high-school/rkv1wni5rmknp1psp4u77oydfnsz3do5ut.png)
Hence, perimeter of △ABC is 21.4.