54.7k views
2 votes
Given g(x) =
(3)/(x^2+2x) find g^-1(x)

2 Answers

5 votes

Answer:

We get:


g^(-1)(x)=(-x+√(x(x+3)))/(x)\ or\ g^(-1)(x)=(-x-√(x(x+3)))/(x)

Explanation:

In order to find the inverse of a given function f(x) we follows following steps:

1) Substitute f(x)=y

2) Interchange x and y

3) Solve for y.

Here we have the function g(x) as follows:


g(x)=(3)/(x^2+2x)

Now, we substitute:


g(x)=y

i.e.


y=(3)/(x^2+2x)

Now, we interchange x and y:


x=(3)/(y^2+2y)\\\\x(y^2+2y)=3\\\\xy^2+2xy-3=0

We know that the solution to the quadratic equation of the type:


at^2+bt+c=0

is given by:


t=(-b\pm √(b^2-4ac))/(2a)

Here,


a=x,\ b=2x\ and\ c=-3

Hence, the solution is:


y=(-2x\pm √((2x)^2-4* x* (-3)))/(2* x)\\\\y=(-2x\pm √(4x^2+12x))/(2x)\\\\y=(-2x\pm 2√(x^2+3x))/(2x)\\\\y=(-x\pm √(x^2+3x))/(x)

i.e.


y=(-x+√(x(x+3)))/(x),\ y=(-x-√(x(x+3)))/(x)

User Sando
by
8.3k points
4 votes

We know that g(x) = \frac{3}{x^2+2x}

We have to find g^-1(x) or inverse of g(x)

Inverse of g(x) can be determined by equating g(x) to y, and determining the value of x in terms of y

g(x) = y = \frac{3}{x^2+2x}

⇒ y × (x² + 2x) = 3

⇒ yx² + 2xy = 3

⇒ yx² + 2yx - 3 = 0

Determining the roots of x using:

x =
\frac{-b + \sqrt{b^(2) - 4ac}}{2a} OR x =
\frac{-b - \sqrt{b^(2) - 4ac}}{2a} , where a is coefficient of x², b is coefficient of x, and c is the constant

⇒ x =
(-2y + √(4y^2 - 4(2y)(-3)))/(2y) OR x =
(-2y - √(4y^2 - 4(2y)(-3)))/(2y)

⇒ x =
(-2y + √(4y^2 + 24y))/(2y) OR x =
(-2y - √(4y^2 + 24y))/(2y)

Hence, g^-1(x) =
(-2y + √(4y^2 + 24y))/(2y) OR x =
(-2y - √(4y^2 + 24y))/(2y)

User Ross Hambrick
by
7.8k points

No related questions found