8.8k views
3 votes
T what point does the curve have maximum curvature? Y = 7ex (x, y) = what happens to the curvature as x → ∞? Κ(x) approaches as x → ∞.

User Arthas
by
8.6k points

1 Answer

4 votes

Formula for curvature for a well behaved curve y=f(x) is


K(x)=
\frac{|{y}''|}{[1+{y}'^2]^(3)/(2)}


The given curve is y=7
e^(x)



{y}''=7e^(x)\\ {y}'=7e^(x)


k(x)=
\frac{7e^(x)}{[{1+(7e^(x))^2}]^(3)/(2)}



{k(x)}'=(7(e^x)(1+49e^(2x))(49e^(2x)-(1)/(2)))/([1+49e^(2x)]^(3))

For Maxima or Minima


{k(x)}'=0


7(e^x)(1+49e^(2x))(98e^(2x)-1)=0


e^(x)=0∨ 1+49e^(2x)=0∨98e^(2x)-1=0


e^(x)=0  ,  ∧ 1+49e^(2x)=0 [not possible ∵there exists no value of x satisfying these equation]


98e^(2x)-1=0

Solving this we get

x=
-(1)/(2)ln(98)

As you will evaluate
{k(x})}''<0 at x=
-(1)/(2)\ln98

So this is the point of Maxima. we get y=7×1/√98=1/√2

(x,y)=[
-(1)/(2)\ln98,1/√2]

k(x)=
\lim_(x\to\infty ) \frac{7e^(x)}{[{1+(7e^(x))^2}]^(3)/(2)}

k(x)=
(7)/(\infty)

k(x)=0







User Hidemyname
by
8.2k points