Formula for curvature for a well behaved curve y=f(x) is
K(x)=
![\frac{|{y}''|}{[1+{y}'^2]^(3)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/mkgd3u6knmtedhgxh7bj2p6u7b85120x70.png)
The given curve is y=7


k(x)=
![\frac{7e^(x)}{[{1+(7e^(x))^2}]^(3)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/7ld9eev83qe8nlbr7v3kdzwgbfukag24fb.png)
![{k(x)}'=(7(e^x)(1+49e^(2x))(49e^(2x)-(1)/(2)))/([1+49e^(2x)]^(3))](https://img.qammunity.org/2019/formulas/mathematics/college/my5duc0hxoq37v1r7sm8xxlgkbjhrot73i.png)
For Maxima or Minima


→

[not possible ∵there exists no value of x satisfying these equation]
→

Solving this we get
x=

As you will evaluate
<0 at x=
So this is the point of Maxima. we get y=7×1/√98=1/√2
(x,y)=[
,1/√2]
k(x)=
![\lim_(x\to\infty ) \frac{7e^(x)}{[{1+(7e^(x))^2}]^(3)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/y5blzy64b31l4zca6sj4eqzdhivttgdmii.png)
k(x)=

k(x)=0