199k views
2 votes
In each of problems 9 through 20: (a) find the solution of the given initial value problem in explicit form.

User Pkout
by
8.2k points

1 Answer

4 votes

solution:


find the solution of the inital value problem.\\</p><p>consider the differential equation y'=(x(x^2+1))/(4y^3)\\</p><p>with initial condition y(0)=-(1)/(2)\\</p><p>y'=(x(x^2+1))/(4y^3)\\</p><p>(dy)/(dx)=(x(x^2+1))/(4y^3)\\</p><p>4y^3dy=x(x^2+1)dx\\</p><p>taken integral\\</p><p>4y^3dy=x(x^2+1)dx\\</p><p>\int 4y^3dy=\int x(x^2+1)dx\\</p><p>(4y^4)/(4)=(x^4)/(3)+(x^2)/(2)+c\\</p><p>put x=0,and y(0)=-(-1)/(√(2))\\</p><p>y^4=(x^4)/(3)+(x^2)/(2)+c\\
((-1)/(√(2)))^4=0+0+c\\</p><p>c=(1)/(4)\\</p><p>therefore, the solution is\\</p><p>y^4=(x^4)/(3)+(x^2)/(2)+(1)/(4)\\</p><p>y=((x^4)/(3)+(x^2)/(2)+(1)/(4))^(1)/(4)

User Erick Mwazonga
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories