68.1k views
3 votes
Suppose that we roll a red and a black die. Let a = "the black die shows a 2 or a 5", b = "the sum of the two dice is at least 7". Are events a and b independent?

User Allocated
by
8.2k points

1 Answer

3 votes

Answer: No, A and B are not independent events.

∵ it does not satisfy the rule of probability for independent events i.e.

P(A∩B)=P(A).P(B)

Step-by-step explanation:

Let A be the event that the black dice shows 2 or 5

Let B be the event that the sum of two dice is atleast 7

Sample space of A={
(R_1,B_2)(R_2,B_2)(R_3,B_2)(R_4,B_2)(
(R_5,B_2),(R_6,B_2),(R_1,B_5),(R_2,B_5),(R_3,B_5),(R_4,B_5),(R_5,B_5),(R_6,B_5)}

Sample space of B= {
(R_1,B_6),(R_2,B_5),(R_2,B_6),(R_3,B_4),(R_3,B_5),(R_3,B_6),,
(R_4,B_3),(R_4,B_4),(R_4,B_5),(R_4,B_6),(R_5,B_2),(R_5,B_3),(R_5,B_4),(R_5,B_5),
(R_5,B_6),(R_6,B_2),(R_6,B_3),(R_6,B_4),(R_6,B_5),(R_6,B_5)}

P(A)=
\frac{\text{No.of favourable outcomes}}{\text{Total no.of observation}}

⇒P(A)=
(12)/(36)

⇒P(A)=
(1)/(3)

Similarly,

P(B)=
(20)/(36)

⇒ P(B) =
(5)/(9)

Now for Sample Space of (A∩B)= {
(R_5,B_2)(R_6,B_2)(R_2,B_5)(R_3,B_5)(R_4,B_5)(R_5,B_5)(R_6,B_5)}

So, P(A∩B)=
(7)/(36)

Now we apply the formula,

P(A).P(B)=P(A∩B)


(1)/(3)×
(5)/(9)
(7)/(36)


(5)/(27)
(7)/(36)

∴ The events A and B are not independent events.




User Marcelo Diniz
by
8.0k points