Answer:
The sequence -2, -8, -14, -20, -26 is an A.P
Option A is correct
Explanation:
Given the sequence we have to choose the option which is an arithmetic sequence.
In A.P, the common difference i.e d remains the same
![d=x_2-x_1=x_3-x_2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8sg2g550nmtfi8fjz8reizvy00ue5q195s.png)
Option A: -2, -8, -14, -20, -26, ...
![x_2-x_1=-14-(-8)=-14+8=-6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/iwo8fcxezsejdjkjplopkcsjdnb0s7ylfs.png)
![x_3-x_2=-20-(-14)=-20+14=-6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/5b21m0d00w7kf3a5qm5nqs6h2jo2omptwk.png)
which is same hence A.P
Option B: -48, -24, -12, -6, -3,...
![x_2-x_1=-24-(-48)=-24+48=24](https://img.qammunity.org/2019/formulas/mathematics/middle-school/x7xwurtx4zu6jxy614ecaf1985fkdc16ks.png)
![x_3-x_2=-12-(-24)=-12+24=-12](https://img.qammunity.org/2019/formulas/mathematics/middle-school/qtbubqcnce58qs3rte5miiqboj9wjdopre.png)
which is not same hence not an A.P
Option C: -2, 6, -10, 14, -18,...
![x_2-x_1=6-(-2)=6+2=8](https://img.qammunity.org/2019/formulas/mathematics/middle-school/tsi41trubdc4lsuyyza7kt4xl9lliqgrol.png)
![x_3-x_2=-10-6=-16](https://img.qammunity.org/2019/formulas/mathematics/middle-school/qb309s5z7q672te2plueohh0a9mo2y7xsa.png)
which is NOT same hence not an A.P
Option D: 1, 6, 12, 18, 24,..
![x_2-x_1=6-1=5](https://img.qammunity.org/2019/formulas/mathematics/middle-school/d62v4wkftyso56hom8o9l7suz8iru7yio7.png)
![x_3-x_2=12-6=6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/t2f3x1z381x92xwvjk7b71x1mubg52meim.png)
which is not same hence not an A.P