Answer:
![\mid -2(2)/(3)\mid =2(2)/(3)](https://img.qammunity.org/2019/formulas/mathematics/college/yd5nw8e5pe8cpkhwbd5275haimcjdvx7er.png)
Explanation:
We are given that a number in mixed fraction
![-2(2)/(3)](https://img.qammunity.org/2019/formulas/mathematics/college/meyjvq3lqf39ndb3dj7cm73eibj8e2g712.png)
We have to find its absolute value .
Absolute value of any number :If a be number then its absolute value is given by
![\mid a\mid](https://img.qammunity.org/2019/formulas/mathematics/college/o7i54hkfkj18navqjgu0rlbk864udwn524.png)
Absolute value of
is given by
![\mid -2(2)/(3)\mid =2(2)/(3)](https://img.qammunity.org/2019/formulas/mathematics/college/yd5nw8e5pe8cpkhwbd5275haimcjdvx7er.png)
Absolute value of any number is the distance or magnitude of that number from zero on the number line.
Distance always positive.
Hence, the absolute value
![\mid -2(2)/(3)\mid =2(2)/(3)](https://img.qammunity.org/2019/formulas/mathematics/college/yd5nw8e5pe8cpkhwbd5275haimcjdvx7er.png)