22.3k views
2 votes
Analizando el discriminante indica si las siguientes ecuaciones cuadráticas tienen una solución, dos soluciones o no tienen solución en números reales.

a) x – 3x2 + 9=0
b) 2x2 + x - 1=0
c) – 3x2 + x - 10=0

User BSevo
by
6.6k points

1 Answer

2 votes

Rewrite the equation in the canonic order
ax^2+bx+c=0:


  • -3x^2+x+9 = 0

  • 2x^2+x-1 = 0

  • -3x^2 + x - 10 = 0

The discriminant is defined as
\Delta = b^2-4ac. There are three cases:


  • \Delta > 0 \to \text{two different solutions}

  • \Delta = 0 \to \text{one solution}

  • \Delta < 0 \to \text{no solutions}

Let's compute the discriminant for each equation:


  • -3x^2+x+9 = 0 \to 1-4\cdot(-3)\cdot 9 = 1 + 108 = 109 \to \text{two different solutions}

  • 2x^2+x-1 = 0 \to 1-4\cdot 2\cdot (-1) = 1+8=9 \to \text{two different solutions}

  • -3x^2 + x - 10 = 0 \to 1-4\cdot (-3) \cdot (-10) 1-120 = -119 \to \text{no solutions}
User Kolinko
by
7.1k points