181k views
4 votes
What number is the product of the expression below?

(2.35 x 105)(5.92 x 107)

Question 2 options:

1.3912 × 10 10


1.3912 × 10 11


1.3912 × 10 12


1.3912 × 10 13

User BEvans
by
5.3k points

2 Answers

1 vote


(2.35*10^5)(5.92*10^7)=(2.35\cdot5.92)(10^5\cdot10^7)\\\\=13.912\cdot10^(5+7)=13.912\cdot10^(12)=1.3912\cdot10\cdot10^(12)\\\\=\boxed{1.3912\cdot10^(13)}

User Johannes Jensen
by
5.0k points
4 votes

Answer:
1.3912*10^(13)

Explanation:

The given expression :
(2.35 * 10^5)(5.92 * 10^7)

First combine the like terms (i.e. exponents together and rest of numbers together) , we get


2.35 * 5.92 *10^5 * 10^7

Using property ,
a^m* a^n=a^(m+n) , the above repression will become


13.912 *10^(5+7)\\\\=13.912*10^12

Also, in scientific form , the first number should be in decimal form where decimal should be after first digit .

Then,
13.912*10^(12)


\\\\=1.3912*10*10^(12)\\\\= 1.3912*10^(1+12)\\\\=1.3912*10^(13)

Hence, the final answer =
1.3912*10^(13)

User Bells
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.