Answer:
Maximum height of the object is 94 feet.
Maximum time taken is 2.9 seconds.
Explanation:
We have,
Height of the bridge is
.
i.e.
![h=-16t^(2)+16t+90](https://img.qammunity.org/2019/formulas/mathematics/middle-school/b9g55c2i1di4ljdotj71ptyisidcveayok.png)
i.e.
![(dh)/(dt)=-32t+16](https://img.qammunity.org/2019/formulas/mathematics/middle-school/m6poxcolp9482bt599903uxvlz0r5pb3mu.png)
Equating
gives,
i.e.
![-32t=-16](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gptkul3vyh4jjpervltagvo3pf0a5lv5t4.png)
i.e.
![t=(-16)/(-32)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4nga2fygvut708j8m8g93adfjzkqd5zcxm.png)
i.e.
![t=(1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ps2hdgtlbk12nz1xxdxmviuzzlfgo0hk7f.png)
Again differentiating, we get
.
Thus, by the 'First derivative test of the maxima and minima', we get,
The maximum height of the object will be at the time,
second.
Thus, the maximum height is given by,
![h=-16* 0.5^(2)+16* 0.5+90](https://img.qammunity.org/2019/formulas/mathematics/middle-school/t47fwkkr2zuq7z3r3euo2rd3wt8qof08tc.png)
i.e.
![h=-16* 0.25+16* 0.5+90](https://img.qammunity.org/2019/formulas/mathematics/middle-school/p4lg8tqed5apyaq5yxcedvgsideafzwy4c.png)
i.e.
![h=-4+8+90](https://img.qammunity.org/2019/formulas/mathematics/middle-school/eb2zoai9i9238d12p4bl2e6bnexqxcryh3.png)
i.e.
![h=4+90](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8dnauuvi7czfn2q3k1nupamkj3i43siouu.png)
i.e. h = 94 feet.
Hence, the maximum height of the object is 94 feet.
Further, the height of the object when it reaches the ground will be 0 feet.
So, we have,
![0=-16t^(2)+16t+90](https://img.qammunity.org/2019/formulas/mathematics/middle-school/isf79uin7qh3if0nj30nd79zs1frfzm6bt.png)
i.e.
![16t^(2)-16t-90=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/v8f4gvjy9dhbbx3pfbx1cpl60vou5v84bb.png)
i.e.
![(t+1.9)(t-2.9)=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3gn8gyk9hrd2p6bs60exeo2822ncj4dkto.png)
i.e. t = -1.9 sec or t = 2.9 sec
Since, time cannot be negative.
We get, the maximum time taken by the object to reach the ground is 2.9 seconds.