check the picture below on the top side.
we know that x = 4 = b, therefore, using the 30-60-90 rule, h = 4√3, and DC = 4+8+4 = 16.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=8\\ b=\stackrel{DC}{16}\\ h=4√(3) \end{cases}\implies A=\cfrac{4√(3)(8+16)}{2} \\\\\\ A=2√(3)(24)\implies \boxed{A=48√(3)}](https://img.qammunity.org/2019/formulas/mathematics/high-school/7tpiply3ns4kecjc0ewef210krxrlclsaw.png)
now, check the picture below on the bottom side.
since we know x = 9, then b = 9, therefore DC = 9+6+9 = 24, and h = b = 9.
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=6\\ b=\stackrel{DC}{24}\\ h=9 \end{cases}\implies A=\cfrac{9(6+24)}{2} \\\\\\ A=\cfrac{9(30)}{2}\implies \boxed{A=135}](https://img.qammunity.org/2019/formulas/mathematics/high-school/oigc4y6dog52u1b3n04v74ttf9n3wcp01o.png)