Solve the terms in parentheses first. We'll start on the denominator.
The denominator has an exponent for a fraction that also includes exponents. To multiply exponents within parentheses that are raised to a power, use this rule:
![(x^a)^b = x^(a \cdot b)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/uudt4rqlrqze0x0o02dmljli77mwnenddq.png)
Simplify the denominator:
![((3^4)/(7^3) )^2 = (3^8)/(7^6)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3ffkxlh3qwrv00hqumgrrgw6xe9093z8yx.png)
Solve the fractions in the numerator:
![((3)/(5))^5 = (3^5)/(5^5)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jwy0qz2j9kgcil9xrq2apxtyok9w5mrhhx.png)
![((9)/(7))^2} = (9^2)/(7^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/tc42lciw3cj8k7ov64u32rt19ecebq4qip.png)
The problem should now read:
![((3^5)/(5^5) \cdot (9^2)/(7^2))/((3^8)/(7^6))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/vbq712mf4a1gdap30nyv1p9riyloa1oe9f.png)
There is a denominator in a denominator. We can bring that to the numerator of the overall fraction:
![((3^5)/(5^5) \cdot (9^2)/(7^2))/((3^8)/(7^6)) = \frac{(3^5)/(5^5) \cdot (9^2)/(7^2) \cdot {7^6}}{3^8}}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/buic2brgr8yw3kmchb1uitlpjqxdxluht2.png)
Using a calculator, simplify the numerator:
![(3^5)/(5^5) \cdot (9^2)/(7^2) \cdot {7^6} = (19683)/(7)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8ihegf40gcg4985x42p1t4amq3nm64aayg.png)
The fraction should now read:
![((19683)/(7))/(3^8)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ir9wfux4y07wyhw3pgmlyki72xbgb4tdz2.png)
There is a denominator in the numerator. This can be brought down to the overall denominator:
![((19683)/(7))/(3^8) = (19683)/(3^8 \cdot 7)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/dj6kbbev8mmml1uxlmt5wj55984rfq4ka6.png)
Factor 19683:
![19683 = 3 \cdot3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^9](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ugj1juszdxs0oskq69ksuwfifku0caqe4w.png)
![(19683)/(3^8 \cdot 7) = (3^9)/(3^8 \cdot 7)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gvw8381shd73ked958u764mmmykui5loxg.png)
Simplify the exponents:
![(3^9)/(3^8) = 3](https://img.qammunity.org/2019/formulas/mathematics/middle-school/s7wzxk99lgt5yv41nyf6nyp4yfr23zpzi4.png)
The following fraction will be your answer:
![\boxed{(3)/(7)}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/vj4gx1i0rhg0z2nfvfzgj61yqzdeih1gal.png)