Consider right triangle ΔABC with legs AC and BC and hypotenuse AB. Draw the altitude CD.
1. Theorem: The length of each leg of a right triangle is the geometric mean of the length of the hypotenuse and the length of the segment of the hypotenuse adjacent to that leg.
According to this theorem,
![BC^2=BD\cdot AB.](https://img.qammunity.org/2019/formulas/mathematics/college/60r5wf493bnooi6ggyl6r7mzoiark23ab2.png)
Let BC=x cm, then AD=BC=x cm and BD=AB-AD=3-x cm. Then
![x^2=(3-x)\cdot 3,\\ \\x^2=9-3x,\\ \\x^2+3x-9=0,\\ \\D=3^2-4\cdot (-9)=9+36=45,\\ \\√(D)=√(45)=3√(5),\\ \\x_1=(-3-3√(5) )/(2)<0,\ x_2=(-3+3√(5) )/(2)>0.](https://img.qammunity.org/2019/formulas/mathematics/college/phm449r98bcj7ohhohkj1ff10ry8uvz4a1.png)
Take positive value x. You get
![AD=BC=(-3+3√(5) )/(2)\ cm.](https://img.qammunity.org/2019/formulas/mathematics/college/8ih4r9ga2ecqfieuzqx5zzl72lmb73i75f.png)
2. According to the previous theorem,
![AC^2=AD\cdot AB.](https://img.qammunity.org/2019/formulas/mathematics/college/pbl43ddcw0jth23fwrq2esp8g9wd0oj2tb.png)
Then
![AC^2=(-3+3√(5) )/(2)\cdot 3=(-9+9√(5) )/(2),\\ \\AC=\sqrt{(-9+9√(5) )/(2)}\ cm.](https://img.qammunity.org/2019/formulas/mathematics/college/5u3w4o8c2wg3nxwzl43265gn657ba4bfus.png)
Answer:
![AC=\sqrt{(-9+9√(5) )/(2)}\ cm.](https://img.qammunity.org/2019/formulas/mathematics/college/qx9qnh64n36wlaycc2nevzsau1zvesihs4.png)
This solution doesn't need CD=2 cm. Note that if AB=3cm and CD=2cm, then
![CD^2=AD\cdot DB,\\ \\2^2=AD\cdot (3-AD),\\ \\AD^2-3AD+4=0,\\ \\D<0](https://img.qammunity.org/2019/formulas/mathematics/college/wsqiyg90ro72m8bit5x2qjjuw4uiep7qm8.png)
This means that you cannot find solutions of this equation. Then CD≠2 cm.