219k views
1 vote
(2^8 x 3^−5 x 6^0)−2 x 3 to the power of negative 2 over 2 to the power of 3, whole to the power of 4 x 2^28

--

(2^8 x 3^−5 x 6^0)−2 x 3 to the power of negative 2 over 2 to the power of 3, whole-example-1
User KiranM
by
7.9k points

2 Answers

1 vote

Here are a few rules about exponents:

  1. Powering a power:
    (x^m)^n=x^(m*n)
  2. Zeroth power:
    x^0=1
  3. Multiplying exponents of the same base:
    x^m*x^n=x^(m+n)
  4. Dividing exponents of the same base:
    (x^m)/(x^n)=x^(m-n)

Firstly, cancel out the 6^0 and solve the power of powers:


(2^8*3^(-5))^(-2)=2^(8*-2)3^(-5*-2)=2^(-16)3^(10)\\\\((3^(-2))/(2^3))^4=(3^(-2*4))/(2^(3*4))=(3^(-8))/(2^(12))\\\\2^(-16)3^(10)*(3^(-8))/(2^(12))*2^(28)

Next, multiply:


(2^(-16)3^(10))/(1)*(3^(-8))/(2^(12))*(2^(28))/(1)=(2^(-16+28)3^(10+(-8)))/(2^(12))=(2^(12)3^(2))/(2^(12))

Next, divide:


(2^(12)3^(2))/(2^(12))=2^(12-12)3^(2-0)=2^03^2=3^2

Your final answer is 3^2, or 9.

User Zohar Etzioni
by
9.1k points
3 votes


(2^8\cdot3^(-5)\cdot6^0)^(-2)\cdot\left((3^(-2))/(2^3)\right)^4\cdot2^(28)\\\\=(2^8)^(-2)\cdot(3^(-5))^(-2)\cdot1^(-2)\cdot((3^(-2))^4)/((2^3)^4)\cdot2^(28)\\\\=2^(-16)\cdot3^(10)\cdot(3^(-8))/(2^(12))\cdot2^(28)\\\\=2^(-16)\cdot2^(28)\cdot2^(-12)\cdot3^(10)\cdot3^(-8)\\\\=2^(-16+28+(-12))\cdot3^(10+(-8))\\\\=2^0\cdot3^2=1\cdot9=\boxed{9}\\\\Used:\\\\(a\cdot b)^n=a^n\cdot b^n\\\\(a^n)^m=a^(n\cdot m)\\\\a^n\cdot a^m=a^(n+m)\\\\a^(-n)=(1)/(a^n)

User Kaufman
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories