We have been given the expression
![(a\cdot a \cdot a \cdot a \cdot a \cdot a )/(a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dzbxhm3ispir870wqhv742tn7m46x7b5tk.png)
We have to write this expression in the form
![a^n](https://img.qammunity.org/2019/formulas/mathematics/high-school/9n6v426k8o4mysdbw24c09eb43x2pox6m5.png)
In order to write the given expression in this form, we can use some exponent property.
![(1) x^a\cdot x^b= x^(a+b)\\\\(2)(x^a)/(x^b)=x^(a-b)](https://img.qammunity.org/2019/formulas/mathematics/high-school/3jrgpbasaqffkd74z2p3w0t0s9rsv2jnal.png)
On using the property (1), we have
![(a\cdot a \cdot a \cdot a \cdot a \cdot a )/(a)\\\\=(a^(1+1+1+1+1+1))/(a)\\\\(a^6)/(a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/8kuwr1l9ntwih75xxucnovf5r478y13bcd.png)
Now, on using the property (2), we get
![(a^6)/(a)\\\\=a^(6-1)\\\\=a^5](https://img.qammunity.org/2019/formulas/mathematics/high-school/zc27ipurj8ii70cddskyhx0x24sfxbk3no.png)
Therefore, the simplified form of the given expression is
![a^5](https://img.qammunity.org/2019/formulas/mathematics/high-school/u3cjbo2iuv4kxrr3ohequc2uqmqjz485ge.png)