3.8k views
3 votes
Precalculus please help!!!!

1) Find (f-g)(x) when f(x)=2x+6/3x and g(x)=(sqrt)x-8/3x

2)Determine the domain and function of (fog)(x) where f(x)=3x-1/x-4 and g(x)=x+1/x

User Shakib
by
7.5k points

2 Answers

2 votes

Answer:


f(x)=2x+(6)/(3x)\\\\g(x)=√(x)-(8)/(3x)\\\\(f-g)x=f(x)-g(x)\\\\=2x+(6)/(3x)-√(x)+(8)/(3x)\\\\=2x-√(x)+(14)/(3x)\\\\2.\rightarrow f(x)=3x-(1)/(x-4)\\\\g(x)=x+(1)/(x)\\\\fog(x)=f(g(x))\\\\=f(x+(1)/(x))\\\\=3*(x+(1)/(x))-(1)/(x+(1)/(x)-4)\\\\fog(x)=3*((x^2+1))/(x)-(x)/(x^2-4x+1)

Domain of gof(x) will be

x≠0---

x²-4x+1≠0


x\\eq (4\pm √(16-4))/(2)\\\\x\\eq (4\pm √(12))/(2)\\\\x\\eq 2 \pm 2 √(3)

x=R-(
x\\eq (4\pm √(16-4))/(2)\\\\x\\eq (4\pm √(12))/(2)\\\\x\\eq 2 \pm 2 √(3),0)

User Lesya
by
8.3k points
2 votes

1)

f(x) =
(2x + 6)/(3x) g(x) =
(√(x) )/(3x)

f(x) - g(x) =
(2x + 6)/(3x) -
(√(x) )/(3x)

=
(2x + 6 - √(x) )/(3x)

2)

f(x) =
(3x - 1)/(x - 4) g(x) =
(x + 1)/(x)

f(g(x)) =
(3((x + 1)/(x)) - 1)/(((x + 1)/(x)) - 4)

=
(2x + 3)/(-3x + 1)

DOMAIN: x ≠ {4, 0,
(1)/(3) } ⇒ (-∞,
(1)/(3) ) U (
(1)/(3) , 0) U (0, 4) U (4, ∞)

RANGE: y ≠ {
(-2)/(3) } ⇒ (-∞,
(-2)/(3) ) U (
(-2)/(3), ∞)

User Hakob Hakobyan
by
7.7k points