Solution: We are given:
![\mu=15.97,\sigma=0.04](https://img.qammunity.org/2019/formulas/mathematics/college/enjgdbm7109uq0ghpwb3neqqb0lfs8m70h.png)
The process capability is
Upper tolerance limit is 16.1
Lower tolerance limit is 15.9
Now let's find the upper and lower limit of the given process assuming a 99.7% quality level is required (+/- 3 standard deviations):
![Lower-limit=\mu-3 \sigma](https://img.qammunity.org/2019/formulas/mathematics/college/7x6y7kphppfelztv4fi312sw6atr4e0xfy.png)
![=15.97-3 * 0.4](https://img.qammunity.org/2019/formulas/mathematics/college/28zmm4uapdw6fepyrt92uzfmgbac7tt945.png)
![=15.85](https://img.qammunity.org/2019/formulas/mathematics/college/ijgkr1y6en62m44rq3sk0biqqhu3bi5idc.png)
![Upper-limit=\mu+3 \sigma](https://img.qammunity.org/2019/formulas/mathematics/college/h4fpuwm0ijsaxyy8dcaq26li4o9cm4cpgc.png)
![=15.97+3 * 0.4](https://img.qammunity.org/2019/formulas/mathematics/college/qoc0u45phuh8f0uk5nc4ocqpeeydbznliq.png)
![=16.09](https://img.qammunity.org/2019/formulas/mathematics/college/n5xcjce6o9xpzz0a2bf2mcv69ocavqd39o.png)
Since the lower and upper limits are beyond the given tolerance limits, therefore the is not capable.