95.2k views
1 vote
Precalculus help!

1. Find (fog)(x) when f(x)=2/x+3 and g(x)=1/2x.

2. Find (f*g)(x) when f(x)=(sqrt)x+3/x and g(x)=(sqrt)x+3/2x.

3. Find (f+g)(x) when f(x)=x^3-2x^2+1 and g(x)=4x^3-5x+7

User JeffreyWay
by
8.6k points

1 Answer

4 votes

Answer:

1)
(f o g)(x)=(4)/(x+6)

2)
(f*g)(x)=\frac{2x^2+9x^{(3)/(2)}+9}{2x^2}

3)
(f+g)(x)=5x^3-2x^2-5x+8

Explanation:

1) Given :
f(x)=(2)/(x+3) and
g(x)=(1)/(2)x

To find :
(f o g)(x)

Solution :

We know that,


(f o g)(x)=f(g(x)) i.e g(x) within f(x),


f(g(x))=(2)/(g(x)+3)


f(g(x))=(2)/((1)/(2)x+3)


f(g(x))=(2)/((x+6)/(2))


f(g(x))=(4)/(x+6)

Therefore,
(f o g)(x)=(4)/(x+6)

2) Given :
f(x)=\sqrt x+(3)/(x) and
g(x)=\sqrt x+(3)/(2x)

To find :
(f*g)(x)

Solution :

We know that,


(f*g)(x)=f(x) * g(x)


f(x) * g(x)=(\sqrt x+(3)/(x))* (\sqrt x+(3)/(2x))


f(x) * g(x)=x+(3\sqrt x)/(2x)+(3\sqrt x)/(x)+(9)/(2x^2)


f(x) * g(x)=(2x^2+3x\sqrt x+6x\sqrt x+9)/(2x^2)


f(x) * g(x)=\frac{2x^2+9x^{(3)/(2)}+9}{2x^2}

Therefore,
(f*g)(x)=\frac{2x^2+9x^{(3)/(2)}+9}{2x^2}

3) Given :
f(x)=x^3-2x^2+1 and
g(x)=4x^3-5x+7

To find :
(f+g)(x)

Solution :

We know that,


(f+g)(x)=f(x)+g(x)


f(x)+g(x)=x^3-2x^2+1+4x^3-5x+7


f(x)+g(x)=5x^3-2x^2-5x+8

Therefore,
(f+g)(x)=5x^3-2x^2-5x+8

User Zrfrank
by
8.0k points