21.7k views
4 votes
There is a single sequence of integers $a_2$, $a_3$, $a_4$, $a_5$, $a_6$, $a_7$ such that \[\frac{5}{7} = \frac{a_2}{2!} + \frac{a_3}{3!} + \frac{a_4}{4!} + \frac{a_5}{5!} + \frac{a_6}{6!} + \frac{a_7}{7!},\] and $0 \le a_i < i$ for $i = 2$, 3, $\dots$, 7. Find $a_2 + a_3 + a_4 + a_5 + a_6 + a_7$.

User Dawid O
by
6.0k points

1 Answer

3 votes

You have a single sequence of integers
a_2,\ a_3,\ a_4,\ a_5,\ a_6,\ a_7 such that


(a_2)/(2!) + (a_3)/(3!) + (a_4)/(4!) + (a_5)/(5!) + (a_6)/(6!) + (a_7)/(7!)=(5)/(7),

where
0 \le a_i < i for
i = 2, 3, \dots, 7.

1. Multiply by 7! to get


(7!a_2)/(2!) + (7!a_3)/(3!) + (7!a_4)/(4!) + (7!a_5)/(5!) + (7!a_6)/(6!) + (7!a_7)/(7!)=(7!\cdot 5)/(7),\\ \\7\cdot 6\cdot 5\cdot 4\cdot 3\cdoa a_2+7\cdot 6\cdot 5\cdot 4\cdot a_3+7\cdot 6\cdot 5\cdot a_4+7\cdot 6\cdot a_5+7\cdot a_6+a_7=6!\cdot 5,\\ \\7(6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6)+a_7=3600.

By Wilson's theorem,


a_7+7\cdot (6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6)\equiv 2(\mod 7)\Rightarrow a_7=2.

2. Then write
a_7 to the left and divide through by 7 to obtain


6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6=(3600-2)/(7)=514.

Repeat this procedure by
\mod 6:


a_6+6(5\cdot 4\cdot 3\cdoa a_2+ 5\cdot 4\cdot a_3+5\cdot a_4+a_5)\equiv 4(\mod 6)\Rightarrow a_6=4.

And so on:


5\cdot 4\cdot 3\cdoa a_2+ 5\cdot 4\cdot a_3+5\cdot a_4+a_5=(514-4)/(6)=85,\\ \\a_5+5(4\cdot 3\cdoa a_2+ 4\cdot a_3+a_4)\equiv 0(\mod 5)\Rightarrow a_5=0,\\ \\4\cdot 3\cdoa a_2+ 4\cdot a_3+a_4=(85-0)/(5)=17,\\ \\a_4+4(3\cdoa a_2+ a_3)\equiv 1(\mod 4)\Rightarrow a_4=1,\\ \\3\cdoa a_2+ a_3=(17-1)/(4)=4,\\ \\a_3+3\cdot a_2\equiv 1(\mod 3)\Rightarrow a_3=1,\\ \\a_2=(4-1)/(3)=1.

Answer:
a_2=1,\ a_3=1,\ a_4=1,\ a_5=0,\ a_6=4,\ a_7=2.

User Dprevite
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.