So for this, we will be applying the Triangle Inequality Theorem, which states that the sum of 2 sides must be greater than the third side for it to be a triangle. If any inequality turns out to be false, then the set cannot be a triangle.
![A+B>C\\A+C>B\\B+C>A](https://img.qammunity.org/2019/formulas/mathematics/high-school/k6p34525nbi3igufuqyjk03e18axzu2g12.png)
First Option: {6, 10, 12}
Let A = 6, B = 10, and C = 12:
![6+10>12\\16>12\ \textsf{true}\\\\6+12>10\\18>10\ \textsf{true}\\\\12+10>6\\22>6\ \textsf{true}](https://img.qammunity.org/2019/formulas/mathematics/high-school/lc3ixuwf8vo2twywv0wwb4zbcv0dovg8ns.png)
Second Option: {5, 7, 10}
Let A = 5, B = 7, and C = 10
![5+7>10\\12>10\ \textsf{true}\\\\5+10>7\\15>7\ \textsf{true}\\\\10+7>5\\17>5\ \textsf{true}](https://img.qammunity.org/2019/formulas/mathematics/high-school/kgmbu7sm4gjn1s35prfgnwzq3u9vtyrmys.png)
Third Option: {4, 4, 9}
Let A = 4, B = 4, and C = 9
![4+4>9\\8>9\ \textsf{false}\\\\4+9>4\\13>4\ \textsf{true}\\\\4+9>4\\13>4\ \textsf{true}](https://img.qammunity.org/2019/formulas/mathematics/high-school/vedu8ymtvpq6go4h86iezapx038ue9ohyz.png)
Fourth Option: {2, 3, 3}
Let A = 2, B = 3, and C = 3
![2+3>3\\5>3\ \textsf{true}\\\\2+3>3\\5>3\ \textsf{true}\\\\3+3>2\\6>2\ \textsf{true}](https://img.qammunity.org/2019/formulas/mathematics/high-school/5nkamsho81no0uqqu5a43r8f4wp06mevkh.png)
Conclusion:
Since the third option had an inequality that was false, the third option cannot be a triangle.