Answer:- The maximum mass of the object is
.
Solution:- The equation for de-Broglie wavelength is:
![\lambda =(h)/(mv)](https://img.qammunity.org/2019/formulas/chemistry/middle-school/wjs2bdt5g21h91145plr6qdicmtmp9337x.png)
where, h is planck's constant, m is the mass and v is the velocity.
Given wavelength is 0.430 fm. fm stands for femtometer. let's convert it to meter.
![1fm=10^-^1^5m](https://img.qammunity.org/2019/formulas/chemistry/middle-school/4c6mlmdmt1e0v5rtagzw76heo4046jbral.png)
![0.430fm((10^-^1^5m)/(1fm))](https://img.qammunity.org/2019/formulas/chemistry/middle-school/f2zia3d9wmiwyos0duh261qvfhuegnl7o6.png)
=
![4.30*10^-^1^6m](https://img.qammunity.org/2019/formulas/chemistry/middle-school/491qutgltu8qxg6fuvegg0yz032hzsgli0.png)
velocity is given as
. Let's plug in the values in the equation:
![4.30*10^-^1^6m=(6.626*10^-^3^4J.s)/(m*885m.s^-^1)](https://img.qammunity.org/2019/formulas/chemistry/middle-school/s99cjaa5y93055n4hcob2qdd4iue6uu4by.png)
(at denominator the first m stands for mass and the second m is the unit of length that stands for meter)
We know that,
![J=kg.m^2.s^-^2](https://img.qammunity.org/2019/formulas/chemistry/middle-school/h18vi4teuk3rigg5v55tbuxynec40tsqv5.png)
So,
![4.30*10^-^1^6m=(6.626*10^-^3^4kg.m^2.s^-^1)/(m*885m.s^-^1)](https://img.qammunity.org/2019/formulas/chemistry/middle-school/4vjk05cnbtq2emj18uy92xc1szjy3so2l1.png)
![4.30*10^-^1^6m=(7.48*10^-^3^7kg.m)/(m)](https://img.qammunity.org/2019/formulas/chemistry/middle-school/8odpeqcs7zjlzdxi24n6jaxs4u6zrrwfqw.png)
![m=(7.48*10^-^3^7kg.m)/(4.30*10^-^1^6m)](https://img.qammunity.org/2019/formulas/chemistry/middle-school/wnx545ha6k10oykaifvbmo9n7weu8pe29p.png)
![m=1.74*10^-^2^1kg](https://img.qammunity.org/2019/formulas/chemistry/middle-school/s9u91rpo19trs23u296qydgvgfixv7cpyh.png)
So, the maximum mass of the object is
.