206k views
4 votes
Emily and Zach have two different polynomials to multiply:

Polynomial product A:
(4x2 – 4x)(x2 – 4)Polynomial product B:
(x2 + x – 2)(4x2 – 8x)

They are trying to determine if the products of the two polynomials are the same. But they disagree about how to solve this problem.

User Ksimka
by
4.9k points

2 Answers

4 votes

For multiplying two polynomials, we will multiply each term in the first parenthesis with the whole second parenthesis part and then use distributive property and simplify in the end.

Polynomial product A


(4x^2 -4x)(x^2 -4)\\ \\ =4x^2(x^2-4)-4x(x^2-4)\\ \\ = 4x^4-16x^2-4x^3+16x\\ \\ =4x^4-4x^3-16x^2+16x

Polynomial product B


(x^2+x-2)(4x^2-8x)\\ \\ =x^2(4x^2-8x)+x(4x^2-8x)-2(4x^2-8x)\\ \\ =4x^4-8x^3+4x^3-8x^2-8x^2+16x\\ \\=4x^4-4x^3-16x^2+16x

Thus, the products of the two polynomials are the same.

User Elan Hickler
by
5.0k points
3 votes

Answer:

We need to multiply of given polynomials

Given:-

Polynomial product A :
(4x^(2)-4x)(x^(2)-4)

Polynomial product B :
(x^(2)+x-2)(4x^(2)-8x)

For product A :
(4x^(2)-4x)(x^(2)-4)

multiply term wise,


4x^(2)(x^(2)-4)-4x(x^(2)-4)


4x^(2+2)-4* 4x^(2)-4x^(2+1)+4* 4x


4x^(4)-16x^(2)-4x^(3)+16x


4x^(4)-4x^(3)-16x^(2)+16x

For product B :
(x^(2)+x-2)(4x^(2)-8x)

multiply term wise,


x^(2)(4x^(2)-8x)+x(4x^(2)-8x)-2(4x^(2)-8x)


4x^(2+2)-8x^(2+1)+4x^(2+1)-8x^(1+1)-8x^(2)+16x


4x^(4)-4x^(3)-8x^(2)-16x^(2)+16x

Therefore, the products of the two polynomials are the same

User Wzab
by
5.7k points