5.2k views
0 votes
Complete the identity. (sin(\alpha +\beta ))/(cos\alpha cos\beta )

1 Answer

5 votes

Answer:



(sin\alpha.cos\beta +cos\alpha.sin\beta)/(cos\alpha.cos\beta)=tan\alpha +tan\beta


Step-by-step explanation:


Here are the steps to simplify the expression and obtain the identity.


1) Given:



(si(\alpha+\beta))/(cos(\alpha)cos(\beta))


2) Use the identity sin(α + β) = sin(α)cos(β) + cos(α)sin(β)



(sin\alpha.cos\beta +cos\alpha.sin\beta)/(cos\alpha.cos \beta)


3) Distributive property of division:



(sin\alpha.cos\beta)/(cos\alpha.cos \beta)+(cos\alpha.sin\beta)/(cos\alpha.cos \beta)


4) Simplify common factors in numerators and denominators



(sin\alpha)/(cos\alpha )+(sin\beta)/(cos \beta)


5) Definition of tangent ratio


tanα + tanβ


6) Conclusion



(sin\alpha.cos\beta +cos\alpha.sin\beta)/(cos\alpha.cos \beta)=tan\alpha +tan\beta

User Pagliuca
by
8.9k points