Answer:
6854640
Explanation:
Binomial expansion:
![\left(a+b\right)^n=\sum _(r=0)^n\binom{n}{r}a^(\left(n-r\right))b^r](https://img.qammunity.org/2019/formulas/mathematics/high-school/miex9kepyaapocwbzu4pilu3sv941njnck.png)
Term where power of second term is r.
![Term=\binom{n}{r}a^(\left(n-r\right))b^r](https://img.qammunity.org/2019/formulas/mathematics/high-school/b6rdn0abd2zrx3h5pytwhr84lz6rx6casb.png)
The given expression is
![(13a^2-4b)^6](https://img.qammunity.org/2019/formulas/mathematics/high-school/k65pec1esr8d49q963t945mftpugcbvxxf.png)
here, n=6.
We need to find the coefficient of the term
.
Power of b is 2, so the value of r is 2.
Using binomial expansion, we can find the term
with its coefficient.
![=\binom{6}{2}(13a^2)^(\left(6-2\right))(-4b)^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/mwzqkxpo10ozy79yw8h39hpo2xogjpr8wy.png)
![=(6!)/(2!\left(6-2\right)!)\left(13a^2\right)^4\left(-4b\right)^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/txn2v9po8l8c3omd16df7h9rfuqk3nb0gx.png)
![=15(13)^4(a^2)^4(-4)^2(b)^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/kpp07llvdbwiwa9qqkxza05mjf2qtia8fv.png)
![=6854640a^8b^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/qo4wz9k3pvmtj7vxtvo8pwa7sdsa7ho4oi.png)
Therefore, the coefficient of the term
is 6854640.