134k views
4 votes
Please show that;

Sin(x+y)cos(x-y) = sin x cos x + sin y cos y

1 Answer

4 votes

Apply the rules of sum/difference for trigonometric functions:


\sin(x+y) = \sin(x) \cos(y) + \cos(x) \sin(y)


\cos(x-y) = \sin(x) \sin(y) + \cos(x) \cos(y)

Multiply the two expressions:


(\sin(x) \cos(y) + \cos(x) \sin(y)) (\sin(x) \sin(y) + \cos(x) \cos(y)) =


\sin(x) \cos(y)\sin(x) \sin(y) + \sin(x) \cos(y)\cos(x) \cos(y) + \cos(x) \sin(y)\sin(x) \sin(y) + \cos(x) \sin(y)\cos(x) \cos(y) =


\sin^2(x) \cos(y)\sin(y) + \sin(x) \cos^2(y)\cos(x)+ \cos(x) \sin^2(y)\sin(x) + \cos^2(x) \sin(y)\cos(y)

You can factor
\cos(y)\sin(y) from the first and last term, and
\sin(x)\cos(x) from the two middle terms: you have


\cos(y)\sin(y)(\sin^2(x)+\cos^2(x)) + \sin(x) \cos(x)(\cos^2(y)+\sin^2(y))

Since
\sin^2(x)+\cos^2(x)=1, the identity is proven.

User Shavkat
by
5.2k points