For the first 5.0 seconds of its motion, the train covers a distance of
![\left(75\,(\mathrm m)/(\mathrm s)\right)(5.0\,\mathrm s)+\frac12\left(-2.5\,(\mathrm m)/(\mathrm s)\right)(5.0\,\mathrm s)^2=344\,\mathrm m](https://img.qammunity.org/2019/formulas/physics/college/jr2crwp87w1tojnqmo5aq4czmojpd2ugt7.png)
After the first 5.0 seconds, the train's velocity is
![75\,(\mathrm m)/(\mathrm s)+\left(-2.5\,(\mathrm m)/(\mathrm s^2)\right)(5.0\,\mathrm s)=62.5\,(\mathrm m)/(\mathrm s)](https://img.qammunity.org/2019/formulas/physics/college/kk5qi9jktyzgip0hg1gif5m6nnzsvv2xuh.png)
For the next 100.0 seconds, the trains covers a distance of
![\left(62.5\,(\mathrm m)/(\mathrm s)\right)(100.0\,\mathrm s)=6250\,\mathrm m](https://img.qammunity.org/2019/formulas/physics/college/8d2vrbd9mtpao0sgjfsjjhn007erqr4u9f.png)
and thus a total distance of 6594 meters.
After the first 105.0 seconds, the train's velocity
at time
(where
corresponds to the 105.0 second mark) is given by
![v(t)=62.5\,(\mathrm m)/(\mathrm s)+\left(-5\,(\mathrm m)/(\mathrm s^2)\right)t](https://img.qammunity.org/2019/formulas/physics/college/7j9xnts6elxzgbq8wgmzq7kolrl7up2kn9.png)
and its position
at time
(again,
corresponds to the 105.0 second mark) by
![x(t)=\left(62.5\,(\mathrm m)/(\mathrm s)\right)t+\frac12\left(-5\,(\mathrm m)/(\mathrm s^2)\right)t^2](https://img.qammunity.org/2019/formulas/physics/college/q2x51vs5c6tunibey3xuv146wc7pxnjdm9.png)
The time it takes for the train to stop is such that
, for which we have
![0=62.5\,(\mathrm m)/(\mathrm s)+\left(-5\,(\mathrm m)/(\mathrm s^2)\right)t\implies t=12.5\,\mathrm s](https://img.qammunity.org/2019/formulas/physics/college/vt32oh0d8xd906ve7oqxdkcygt03dfr128.png)
Then the distance covered in the final slow-down phase of the train is
![x(12.5\,\mathrm s)=391\,\mathrm m](https://img.qammunity.org/2019/formulas/physics/college/ytbgmmww4o2rkgxmlrtb3euhnhm27qc4bf.png)
giving a total distance covered of about 6990 meters.