Recall that
![{v_y}^2-{v_(0y)}^2=2a_y(y-y_0)](https://img.qammunity.org/2019/formulas/physics/high-school/9y3zb3yqziu6t8p1bo4jn54safjj38eq2n.png)
At its maximum height
, the toy will have 0 vertical velocity, so that
![-\left(4.5\,(\mathrm m)/(\mathrm s)\right)^2=2\left(-9.8\,(\mathrm m)/(\mathrm s^2)\right)y_{\mathrm{max}}](https://img.qammunity.org/2019/formulas/physics/high-school/arj25zf97vkuzvkwaqf5016l9an3i2gs43.png)
![\implies y_{\mathrm{max}}=1.0\,\mathrm m](https://img.qammunity.org/2019/formulas/physics/high-school/3xgnm7f2fqy14vg845zzvdunbcejitg6k3.png)
For the toy to reach this maximum height, it takes time
such that
![\frac{0+v_0}2t=y_{\mathrm{max}}\implies t=0.46\,\mathrm s](https://img.qammunity.org/2019/formulas/physics/high-school/o5hcrhqo55nt1l36vyqn4w44v8styglgge.png)
which means it takes twice this time, i.e.
, for the toy to reach its original position.
The velocity of the toy when it falls 1.0 m below its starting point is
![{v_y}^2-\left(4.5\,(\mathrm m)/(\mathrm s)\right)^2=2\left(-9.8\,(\mathrm m)/(\mathrm s^2)\right)(0-1.0\,\mathrm m)](https://img.qammunity.org/2019/formulas/physics/high-school/1hulqcdwe33umnemose5oremv3gu6summp.png)
![\implies{v_y}^2=39.85\,(\mathrm m^2)/(\mathrm s^2)](https://img.qammunity.org/2019/formulas/physics/high-school/isbfkq09ua7hou6tl8n7rdeou9prcvz9y2.png)
![\implies v_y=-6.4\,(\mathrm m)/(\mathrm s)](https://img.qammunity.org/2019/formulas/physics/high-school/7zqxtjalqt2unnag31rmq1sfjydug6lo8e.png)
where we took the negative square root because we expect the toy to be moving in the downward direction.