129k views
3 votes
The midpoint of the line segment from P1 to P2 is (-6,5). If P1=(-9,7), what is P2?

User Sevas
by
5.9k points

2 Answers

5 votes

Let's assume P2 point be (a,b)

P2=(a,b)

The midpoint of the line segment from P1 to P2 is (-6,5)

P1=(-9,7)

so, firstly, we will find mid-point between P1 and P2

we get


=((-9+a)/(2),(7+b)/(2))

now, this point must be (-6,5)

so, we can set it equal


(-6,5)=((-9+a)/(2),(7+b)/(2))

now, we can compare x-values and y-values

we get


-6=(-9+a)/(2)

we can solve for a


-6*2=-9+a


-12=-9+a


-12+9=-9+a+9


a=-3

now, we can compare y-value


5=(7+b)/(2)


5*2=(7+b)/(2)*2


10=7+b


10-7=7+b-7


b=3

so, we will get

P2=(a,b)

P2=(-3,3)...............Answer

User Inshua
by
5.5k points
6 votes

Let point O be the midpoint of a segment P₁P₂. Then point O has coordinates (-6,5). You also know coordinates (-9,7) of point P₁.

Use formula for midpoint's coordinates:


x_O=(x_(P_1)+x_(P_2))/(2) \text{  and  } y_O=(y_(P_1)+y_(P_2))/(2).

Substituting known coordinates, you get:


-6=(-9+x_(P_2))/(2) \text{  and  } 5=(7+y_(P_2))/(2).

Thus,


x_(P_2)=-6\cdot 2+9=-12+9=-3,\\ \\y_(P_2)=5\cdot 2-7=10-7=3.

Answer:
P_2(-3,3).

User Giulio
by
5.6k points