see the attached figure to better understand the problem
Step 1
Find the value of c
we know that
Applying the Pythagorean Theorem
![c^(2) =a^(2)+b^(2)](https://img.qammunity.org/2019/formulas/mathematics/college/1rt4msbof8rvo7xol5dseobywkose976h8.png)
we have
![a=505\ mm](https://img.qammunity.org/2019/formulas/mathematics/college/sw2fabiswsiuwq9vyhiu58qvqob7s4r46z.png)
![b=286\ mm](https://img.qammunity.org/2019/formulas/mathematics/college/knc74d112f46lode7j4e58jj1rublnl61z.png)
substitute the values in the formula
![c^(2) =505^(2)+286^(2)](https://img.qammunity.org/2019/formulas/mathematics/college/1o8relukehhdc6i7rxnke105t1t032sjd4.png)
![c^(2) =336,821](https://img.qammunity.org/2019/formulas/mathematics/college/g1ji8fa3tamfhhtjdwbvlqnpfvozv3d5re.png)
Step 2
Find the value of angle A (α)
we know that
in the right triangle ABC
![cos(A)=(b)/(c) \\ \\cos(A)=(286/580.36)\\ \\A=arc\ cos(286/580.36)\\ \\A=60.48\ degrees](https://img.qammunity.org/2019/formulas/mathematics/college/qosx3vx3smr7qsg8n8kzq2btfpk3cp10jw.png)
Step 3
Find the angle B (β)
we know that
in the right triangle ABC
angle A and angle B are complementary angles
so
A+B=90
solve for B
B=90-A-------> B=90-60.48-----> B=29.52°
therefore
the answers are
a) the measure of side c is 580.36 mm
b) the measure of the angle α is 60.48°
c) the measure of the angle β is 29.52°