Refer to the attached image.
To prove: ΔRST ≅ ΔVST
Statement Reason
1. ST is the perpendicular bisector of RV. 1. Given
2. ∠STR and ∠STV are right angles. 2. def of perpendicular bisector
3. RS ≅ VS 3. Perpendicular bisector theorem
As Perpendicular bisector theorem states that "If a point is on the perpendicular bisector of a segment, then it is equidistant from the segment's endpoints"
Since, S is on the perpendicular bisector of segment RV, then it is equidistant from the segment's endpoints that is R and V.
Therefore, RS ≅ VS.
4. ST ≅ ST 4. reflexive property
5. ΔRST ≅ ΔVST 5. HL theorem
Hence proved, ΔRST ≅ ΔVST.