Answer: t∈[0.6] 0 c≤t≤6 c
Explanation:
h=316+48t-16t²
-16t²+48t+316≥28
-16t²+48t+316-28≥28-28
-16t²+48t+288≥0
Divide both parts of the equation by 16 :
-t²+3t+18≥0
Multiply both parts of the equation by -1 (in this case, change the sign of the inequality to the opposite)
-(-1)t²+(-1)3t+(-1)18≤0
t²-3t-18≤0
t²-6t+3t-18≤0
t(x-6)+3(t-6)≤0
(t-6)(t+3)≤0
Find the zeros of the function:
t-6=0
t-6+6=0+6
t=6
t+3=0
t+3-3=0-3
t=-3
⇒ - ∞__+__-3__-__6__+__+∞
⇒ t∈[-3;6]
t≥0
⇒ t∈[0,6]