A random variable x is normally distributed with a mean of 100 and a variance of 25. Given that x = 110, its corresponding z- score is 0.40.
Answer: The given z-score is false.
Explanation: We are given:
Mean,
,
Variance,
![\sigma^(2)=25](https://img.qammunity.org/2019/formulas/mathematics/college/a9h2ff6ricnpm892njr16py3watqyf2mid.png)
![\therefore\sigma=\sqrt{\sigma^(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/czkyo970cd1smezf082d0eh2kvrxfj3a86.png)
![=√(25)](https://img.qammunity.org/2019/formulas/mathematics/college/ct10z82pedfb61qj0br6q0tkxw24sbd98d.png)
![=5](https://img.qammunity.org/2019/formulas/mathematics/high-school/rj03bg446dr4mnqzzimbqz68825honfb28.png)
The z-score formula is given below:
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2019/formulas/mathematics/college/u4ithhep47bpu4c0nca9bhq3gnmjzjkce5.png)
![=(110-100)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/1biys2i6npilftk21v8pj00y1zzjvt14en.png)
![=(10)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/x48bu8y8dlo5veefhbwkwv14lepaiydmjr.png)
![=2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ozx3kt46aj3dtkbrk8edz6kmmnkuivam1c.png)
Therefore, the z-score corresponding x=100 is 2
Therefore, the given z-score = 0.4 is false.