solution:
a)
M₃= P₁+P₂+P₃/3
Now the let point A be center of mass tetrahedran then,
Acm = P₁+P₂+P₃+P₄/4
4Acm =P₁+P₂+P₃+P₄
P₁+P₂+P₃= 3M₃
4Acm = 3M₃ + p₄ ----------- 1
Let a point o be the point that devide line
3M₃p₄ into radio 1:3
i.e M₃o/o P₄ = 1/3
so, center of mass of this point will be,
0 = xcm = 3M₃o + o P₄ /3+1
40 = 3M₃o + o P₄ ---------------------- 2
From 1 and 2 ,
We can see that o = Acm
Hence, we have considered arbitrary points.
xcm = P₁+P₂+P₃+P₄/4
now, the mid point of P₁P₂ = P₁+P₂/2
x P₁P₂ = P₁+P₂/2
x P₃P₄ = x P₃ + P₄/2
now center of mass of x P₁P₂ & x P₃P₄
= XP₁P₂P₃P₄ = x P₁P₂ + x P₃P₄/2
XP₁P₂P₃P₄ = x P₁+P₂+ P₃+P₄ = Xcm
Hence it is proved that line joining midpoint passes through c.m