90.5k views
3 votes
Pq=6x+25 and qr=16-3x; find pr

2 Answers

3 votes

Answer:

PR = 3x + 41

Explanation:

Given

PQ = 6x + 25

QR = 16 - 3x

Q is the common point on the line PR, thus dividing PR into PQ and QR.

Therefore, we can write,

PR = PQ + QR

PR = 6x + 25 + 16 - 3x

PR = 6x- 3x + 25 + 16

PR = 3x + 41

Therefore, PR = 3x + 41

User Atlante Avila
by
8.8k points
6 votes


Given:\\\overline{PQ}=6x+25\\\overline{QR}=16-3x\\\\Finding:\overline{PR}


If \; Q \; is \; a \; point \; in \; between \; the \; line \; segment \; \overline{PR}, \; \\ then \; the \; distance \; of \; line \; segment \; \overline{PR} \; \\ can \; be \; found \; by \; adding \; line \; segment \; \overline{PQ} \; and \; \overline{QR}.


Using \; the \; concept \; \overline{PQ}+\overline{QR}=\overline{PR} \;,\\ we \; need \; to \; set \; up \; an \; equation \; given \; below:


\overline{PR} =6x+25 +16-3x\\\\Step \; 1: Grouping \; Like \; Terms\\\overline{PR} =6x-3x+25 +16\\\\Step \; 2: Combining \; Like \; Terms\\\overline{PR} =3x+41

Conclusion:


\overline{PR} \; is \; represented \; the \; expression \; 3x +41

User Animesh Bhardwaj
by
8.3k points