227k views
3 votes
How to do this question by proving the identity?

How to do this question by proving the identity?-example-1
User MrLeeh
by
5.1k points

2 Answers

4 votes

Solution :

  • Refer the attachment

Additional Information :

  • ⇒ sin² θ + cos² θ = 1
  • ⇒ sin² θ = 1 - cos²θ
  • ⇒ sec²θ = 1 + tan²θ
  • ⇒ cot²θ = cosec²θ - 1

Reciprocal identities :-


\boxed{sin θ = (1)/(cosecθ)}


\boxed{cosec θ = (1)/( sin θ)}


\boxed{cos θ = (1)/( sec θ)}


\boxed{sec θ = (1)/(cos θ)}


\boxed{tan θ = (1)/( cot θ)}


\boxed{cot θ = (1)/(tan θ)}

How to do this question by proving the identity?-example-1
User Jason Benson
by
5.9k points
1 vote


\sin^3 \theta-\cos^3 \theta=(\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)\\\\ (\sin \theta-\cos \theta)(\sin^2 \theta+\sin \theta\cos \theta +\cos^2 \theta)=(\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)\\\\ (\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)=(\sin \theta-\cos \theta)(\sin \theta\cos \theta+1)\\\\

User Ggagliano
by
5.1k points