68.8k views
0 votes
What is t. with explanation

What is t. with explanation-example-1

1 Answer

2 votes


\bf \textit{Logarithm Cancellation Rules} \\\\ \stackrel{\stackrel{\textit{we'll use this one}}{\downarrow }}{log_a a^x = x}\qquad \qquad a^(log_a x)=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 12\cdot 6^(t-1)=6\cdot e^(3t-1) \\\\[-0.35em] ~\dotfill\\\\ 12\cdot 6^t\cdot 6^(-1)=6\cdot e^(3t)\cdot e^(-1)\implies 12\cdot \cfrac{6^t}{6}=6\cdot \cfrac{e^(3t)}{e}\implies 2\cdot 6^t=6\cdot \cfrac{e^(3t)}{e}



\bf \cfrac{2\cdot 6^t}{6}=\cfrac{e^(3t)}{e}\implies \cfrac{6^t}{3}=\cfrac{e^(3t)}{e}\implies e6^t=3e^(3t)\implies ln(e6^t)=ln(3e^(3t)) \\\\\\ ln(e)+ln(6^t)=ln(3)+ln(e^(3t))\implies 1+ln(6^t)=ln(3)+3t\cdot  ln(e) \\\\\\ 1+t\cdot  ln(6)=ln(3)+3t\implies t\cdot ln(6)-3t=ln(3)-1 \\\\\\ t[ln(6)-3]=ln(3)-1\implies t=\cfrac{ln(3)-1}{ln(6)-3}\implies t\approx -0.08161643824769

User Jenkas
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories