165k views
3 votes
In the equation (x^2+y)^5, what is the coefficient of the term x^4y^3? what is the coefficient of the same term in the expansion of (3x^2+y)^5?

1 Answer

1 vote


\displaystyle (x+y)^n=\sum_(k=0)^n\binom{n}{k}x^(n-k)y^k

-------------------------------------------------------------



\displaystyle (x^2+y)^n=\sum_(k=0)^n\binom{n}{k}x^(2n-2k)y^k\\ n=5\\ k=3\\\\\binom{5}{3}=(5!)/(3!2!)=(4\cdor5)/(2)=10

It's 10.

----------------------------------------------------


\displaystyle (3x^2+y)^n=\sum_(k=0)^n\binom{n}{k}(3x)^(2n-2k)y^k=\sum_(k=0)^n\binom{n}{k}\cdot 3^(2n-2k)\cdot x^(2n-2k)y^k\\\\ n=5\\ k=4\\\\ \binom{5}{3}\cdot3^(2\cdot5-2\cdot4)=10\cdot3^(2)=10\cdot9=90

It's 90

User ReturnVoid
by
8.6k points

No related questions found