165k views
3 votes
In the equation (x^2+y)^5, what is the coefficient of the term x^4y^3? what is the coefficient of the same term in the expansion of (3x^2+y)^5?

1 Answer

1 vote


\displaystyle (x+y)^n=\sum_(k=0)^n\binom{n}{k}x^(n-k)y^k

-------------------------------------------------------------



\displaystyle (x^2+y)^n=\sum_(k=0)^n\binom{n}{k}x^(2n-2k)y^k\\ n=5\\ k=3\\\\\binom{5}{3}=(5!)/(3!2!)=(4\cdor5)/(2)=10

It's 10.

----------------------------------------------------


\displaystyle (3x^2+y)^n=\sum_(k=0)^n\binom{n}{k}(3x)^(2n-2k)y^k=\sum_(k=0)^n\binom{n}{k}\cdot 3^(2n-2k)\cdot x^(2n-2k)y^k\\\\ n=5\\ k=4\\\\ \binom{5}{3}\cdot3^(2\cdot5-2\cdot4)=10\cdot3^(2)=10\cdot9=90

It's 90

User ReturnVoid
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories