33.6k views
5 votes
What is the simplified version of 3\sqrt{135}

User Slashbin
by
5.6k points

2 Answers

6 votes


9 √(15)
User Colinjwebb
by
5.4k points
4 votes

Answer:

The simplified version of
\sqrt[3]{135} is
3\sqrt[3]{5}.

Explanation:

The given expression is


\sqrt[3]{135}

According to the property of radical expression.


\sqrt[n]{x}=(x)^{(1)/(n)}

Using this property we get


\sqrt[3]{135}=(135)^{(1)/(3)}


\sqrt[3]{135}=(27* 5)^{(1)/(3)}


\sqrt[3]{135}=(3^3* 5)^{(1)/(3)}


\sqrt[3]{135}=(3^3)^{(1)/(3)}* (5)^{(1)/(3)}
[\because (ab)^x=a^xb^x]


\sqrt[3]{135}=3* \sqrt[3]{5}
[\because \sqrt[n]{x}=(x)^{(1)/(n)}]


\sqrt[3]{135}=3\sqrt[3]{5}

Therefore the simplified version of
\sqrt[3]{135} is
3\sqrt[3]{5}.

User Greg Berger
by
5.3k points