So let's set the variables:
Nate: x
Bryan: x + 150
Cameron 2(x + 150)
If the total amount of papers delivered was 1450, we can then set all of this equal to 1450 and solve for x:
![x+ (x+150)+2(x+150)=1450](https://img.qammunity.org/2019/formulas/mathematics/college/w5vf0vxgifsx09ppeo3b6hsj9hbdg1op81.png)
![x+(x+150)+2x +300=1450](https://img.qammunity.org/2019/formulas/mathematics/college/z9vusiglxq2rfztrtadnv1cdrp29mc5b7s.png)
![4x+450=1450](https://img.qammunity.org/2019/formulas/mathematics/college/yzdczc9pwekhbew0frdt3ylydyh4pxaquo.png)
![4x=1000](https://img.qammunity.org/2019/formulas/mathematics/college/6v6xarm457wjiujnq009epx832hd743n70.png)
![x=250](https://img.qammunity.org/2019/formulas/mathematics/college/2m4qsk0o5po15f4tqd3hvzdugplch15uuw.png)
So now we can solve for how many papers each child delivered:
Nate: 250
Bryan: (x + 150) = 250 + 150 = 400
Cameron: 2(x + 150) = 2(250 + 150) = 2(400) = 800