Final answer:
To rotate a point counterclockwise about the origin, we can use the formulas x' = x*cos(theta) - y*sin(theta) and y' = x*sin(theta) + y*cos(theta). Applying these formulas, the new coordinates of D', E', F', and G' are (4, 2), (7, -4), (3, -10), and (0, -8), respectively.
Step-by-step explanation:
To rotate a point counterclockwise about the origin, we can use the following formulas:
x' = x*cos(theta) - y*sin(theta)
y' = x*sin(theta) + y*cos(theta)
Using these formulas, we can find the new coordinates of each vertex:
- D': x' = (-2)*cos(270°) - 4*sin(270°) = 4, y' = (-2)*sin(270°) + 4*cos(270°) = 2
- E': x' = 4*cos(270°) - 7*sin(270°) = 7, y' = 4*sin(270°) + 7*cos(270°) = -4
- F': x' = 10*cos(270°) - 3*sin(270°) = 3, y' = 10*sin(270°) + 3*cos(270°) = -10
- G': x' = 8*cos(270°) - 0*sin(270°) = 0, y' = 8*sin(270°) + 0*cos(270°) = -8
Therefore, the coordinates of D', E', F', G' are (4, 2), (7, -4), (3, -10), and (0, -8), respectively.